ТЕСТОВЫЕ ВОПРОСЫ ПО ДИСЦИПЛИНЕ "МЕХАНИКА ДЕФОРМИРУЕМОГО ТВЕРДОГО ТЕЛА"

1. Какая из ниже приведенных формул определяет интенсивность напряжений?

A.
$$\sigma_i = \frac{1}{2} \left[(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2 \right]^{1/2}$$

B. $\sigma_i = \frac{1}{\sqrt{2}} \left[(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^3 \right]^{1/2}$

C. $\sigma_i = \frac{1}{\sqrt{2}} \left[(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2 \right]^{1/2}$

D. $\sigma_i = \frac{1}{\sqrt{2}} \left[(\sigma_1 - \sigma_2)^3 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2 \right]^{1/2}$

E. $\sigma_i = \frac{1}{\sqrt{2}} \left[(\sigma_1 - \sigma_2)^2 - (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2 \right]^{1/2}$

2. Какая из ниже приведенных формул определяет интенсивность деформации сдвига?

A.
$$\gamma_{i} = \sqrt{\frac{2}{3}} \left[\left(\varepsilon_{x} - \varepsilon_{y} \right)^{2} + \left(\varepsilon_{y} - \varepsilon_{z} \right)^{2} + \left(\varepsilon_{z} - \varepsilon_{x} \right)^{2} + \frac{3}{2} \left(\gamma_{xy}^{2} + \gamma_{yz}^{2} + \gamma_{zx}^{2} \right) \right]^{1/2}$$
B.
$$\gamma_{i} = \sqrt{\frac{2}{3}} \left[\left(\varepsilon_{x} - \varepsilon_{y} \right)^{2} + \left(\varepsilon_{y} - \varepsilon_{z} \right)^{2} - \left(\varepsilon_{z} - \varepsilon_{x} \right)^{2} + \frac{3}{2} \left(\gamma_{xy}^{2} + \gamma_{yz}^{2} + \gamma_{zx}^{2} \right) \right]^{1/2}$$
C.
$$\gamma_{i} = \sqrt{\frac{2}{3}} \left[\left(\varepsilon_{x} - \varepsilon_{y} \right)^{2} + \left(\varepsilon_{y} - \varepsilon_{z} \right)^{2} + \left(\varepsilon_{z} - \varepsilon_{x} \right)^{2} + \frac{1}{2} \left(\gamma_{xy}^{2} + \gamma_{yz}^{2} + \gamma_{zx}^{2} \right) \right]^{1/2}$$
D.
$$\gamma_{i} = \sqrt{\frac{2}{3}} \left[\left(\varepsilon_{x} - \varepsilon_{y} \right)^{2} + \left(\varepsilon_{y} - \varepsilon_{z} \right)^{2} + \left(\gamma_{z} - \varepsilon_{x} \right)^{2} + \frac{3}{2} \left(\gamma_{xy}^{2} + \gamma_{yz}^{2} + \gamma_{zx}^{2} \right) \right]^{1/2}$$
E.
$$\gamma_{i} = \sqrt{\frac{2}{3}} \left[\left(\varepsilon_{x} - \theta_{y} \right)^{2} + \left(\varepsilon_{y} - \varepsilon_{z} \right)^{2} + \left(\varepsilon_{z} - \varepsilon_{x} \right)^{2} + \frac{3}{2} \left(\gamma_{xy}^{2} + \gamma_{yz}^{2} + \gamma_{zx}^{2} \right) \right]^{1/2}$$

3. Определите соотношения Коши?

A.
$$\varepsilon_{ij} = \frac{1}{2} \left(u_{i,j} - u_{j,i} \right)$$

B.
$$\varepsilon_{ij} = \frac{1}{3} \left(u_{i,j} + u_{j,i} \right)$$

C.
$$\varepsilon_{ij} = \frac{1}{4} \left(u_{i,j} + u_{j,i} \right)$$

D.
$$\varepsilon_{ij} = \frac{1}{2} (u_{i,j} + u_{j,i})^2$$

E.
$$\varepsilon_{ij} = \frac{1}{2} \left(u_{i,j} + u_{j,i} \right)$$

4. Какая из ниже приведенных формул определяет антисимметричный тензор поворота?

A.
$$\omega_{ij} = \frac{1}{3} (u_{i,j} - u_{j,i})$$

B.
$$\omega_{ij} = \frac{1}{2} (u_{i,j} - u_{j,i})$$

C.
$$\omega_{ij} = \frac{1}{2} (u_{i,j} - u_{j,i})^2$$
.

D.
$$\omega_{ij} = \frac{1}{2} (u_{i,j} - u_{j,i})^3$$
.

E.
$$\omega_{ij} = \frac{1}{2} (u_{i,j} + u_{j,i})$$

5. Какое из ниже приведенных уравнений определяет тензорное условие совместности деформации Сен-Венана?

A.
$$rot(rot \hat{\varepsilon}_1)^* = 0$$

- B. $rot(rot \hat{\varepsilon}) = 0$
- C. $rot(rot\varepsilon)^* = 0$
- D. $rot(rot \hat{\epsilon})^* = 0$
- E. $rot^2 (rot \hat{\varepsilon})^* = 0$

6. Какое из ниже приведенных уравнений определяет уравнение равновесия среды?

- A. $\sigma_{ii} + F_{k} = 0$
- B. $\sigma_{ii,i} F_i = 0$
- C. $\sigma_{ii,i} + F_1 = 0$
- D. $\sigma_{ii,j} F_i = 0$
- E. $\sigma_{ii} + F_i = 0$

7. Какая из ниже приведенных формул определяет закон Гука?

- A. $\hat{\sigma} = \lambda \hat{E} \varepsilon + 2\mu \hat{\varepsilon}$
- B. $\hat{\sigma} = \lambda \hat{E} \varepsilon 2\mu \hat{\varepsilon}$
- C. $\hat{\sigma} = \lambda E \varepsilon + 2\mu \varepsilon$
- D. $\hat{\sigma} = \lambda \hat{E} + 2\mu \varepsilon$
- E. $\hat{\sigma} = \lambda E + 2\mu \hat{\varepsilon}$

8. Какая из ниже приведенных формул определяет закон Гука?

- A. $\sigma_{ij} = \lambda \varepsilon \delta_{ij} + 2\mu \varepsilon_{ij}$
- B. $\sigma_{ij} = \lambda \varepsilon_{kk} \delta_{ij} + 2\mu \varepsilon_{ij}^2$
- C. $\sigma_{ij} = \lambda \varepsilon + 2\mu \varepsilon_{ij}$
- D. $\sigma_{ij} = \lambda \delta_{ij} + 2\mu \varepsilon_{ij}$
- E. $\sigma_{ij} = \lambda \varepsilon \delta_{ij} + \mu \varepsilon_{ij}$

9. Какая из ниже приведенных формул определяет удельную потенциальную энергию упругой среды?

A.
$$U = \frac{1}{2} \lambda \varepsilon^2 + \mu \varepsilon_{ij}^3$$

B.
$$U = \frac{1}{2} \lambda \varepsilon^2 - \mu \varepsilon_{ij}^2$$

C.
$$U = \frac{1}{2} \lambda \varepsilon^2 + \mu \varepsilon_{ij}$$

D.
$$U = \frac{1}{2} \lambda \varepsilon + \mu \varepsilon_{ij}^2$$

E.
$$U = \frac{1}{2} \lambda \varepsilon^2 + \mu \varepsilon_{ij}^2$$

10. Какая из ниже приведенных формул определяет тензор деформаций?

A.
$$\varepsilon_{ij} = \frac{1}{E} [(1+\nu)\sigma_{ij} - \nu\sigma_{kk}\delta_{ij}]$$

B.
$$\varepsilon_{ij} = \frac{1}{E} [(1+\nu)\sigma_{kk} - \nu\sigma_{kk}\delta_{ij}]$$

C.
$$\varepsilon_{ij} = \frac{1}{F} [(1+\nu)\sigma_{ij} + \nu\sigma_{kk}\delta_{ij}]$$

D.
$$\varepsilon_{ij} = \frac{1}{E} [(1 - \nu)\sigma_{ij} - \nu\sigma_{kk}\delta_{ij}]$$

E.
$$\varepsilon_{ij} = \frac{1}{E}[(1+\nu)]\sigma_{ij} - \nu\sigma_{kk}\delta_{ij}$$

11. Какая из ниже приведенных формул определяет тензор деформаций?

A.
$$\hat{\varepsilon} = \frac{1}{2} [\nabla \vec{u} + \nabla u]$$

B.
$$\hat{\varepsilon} = \frac{1}{3} \left[\nabla \vec{u} + \nabla \vec{u^2} \right]$$

C.
$$\hat{\varepsilon} = \frac{1}{2} [\nabla \vec{u} + (\nabla \vec{u})^*]$$

D.
$$\hat{\varepsilon} = \frac{1}{3} [\nabla \vec{u} - (\nabla u)]$$

E.
$$\hat{\varepsilon} = \frac{1}{2} [\nabla \vec{u} + \vec{u} \nabla]$$

12. Какое из ниже приведенных уравнений определяет вторую краевую задачу?

A.
$$\vec{n} \cdot \hat{\sigma} = \vec{u}$$

B.
$$\vec{n} \times \hat{\sigma} = \vec{q}$$

C.
$$\vec{n} \cdot \vec{\sigma} = \vec{q}$$

D.
$$\hat{n} \cdot \vec{\sigma} = \vec{u}$$

E.
$$\vec{n} \cdot \hat{\sigma} = \vec{q}$$

13. Какое из ниже приведенных уравнений определяет объемный закон Гука?

A.
$$\sigma_{ij} = \lambda \varepsilon \delta_{ij} + 2\mu \varepsilon_{ij}$$

B.
$$\varepsilon_{ij} = \frac{1}{E} [(1 + \nu)\sigma_{ij} - \nu\sigma_{kk}\delta_{ij}]$$

C.
$$\hat{\sigma} = \lambda \hat{E} \varepsilon + 2\mu \hat{\varepsilon}$$

D.
$$\sigma = K\varepsilon$$

E.
$$\hat{\sigma}_2 = 2\mu\hat{\varepsilon}_2$$

14. Какое из ниже приведенных уравнений определяет уравнение равновесия Навье – Коши - Ламе?

A.
$$\frac{1}{1-2\nu} \operatorname{graddiv} \vec{u} + \nabla^2 \vec{u} - \frac{1}{\mu} \vec{F} = 0$$

B.
$$\frac{1}{1-2\nu} \operatorname{graddiv} \vec{u} - \nabla^2 \vec{u} - \frac{1}{\mu} \vec{F} = 0$$

C.
$$\frac{1}{1-2\nu} \operatorname{graddiv} \vec{u} + \nabla^2 \vec{u} + \frac{1}{\mu} \vec{F} = 0$$

D.
$$\frac{1}{1+2v} \operatorname{graddiv} \vec{u} + \nabla^2 \vec{u} + \frac{1}{\mu} \vec{F} = 0$$

E.
$$\frac{1}{1-2\nu} \operatorname{graddiv} \vec{u} + \nabla^3 \vec{u} + \frac{1}{\mu} \vec{F} = 0$$

15. Какое из ниже приведенных уравнений определяет уравнение движения Навье – Коши - Ламе?

A.
$$(\lambda - \mu)graddiv\vec{u} + \mu\nabla^2 \vec{u} + \vec{F} = \rho \frac{\partial^2 \vec{u}}{\partial t^2}$$

B.
$$(\lambda + \mu)graddiv\vec{u} - \mu\nabla^2 \vec{u} + \vec{F} = \rho \frac{\partial^2 \vec{u}}{\partial t^2}$$

C.
$$(\lambda + \mu)graddiv\vec{u} + \mu\nabla^2 \vec{u} - \vec{F} = \rho \frac{\partial^2 \vec{u}}{\partial t^2}$$

D.
$$(\lambda + \mu)^2 \operatorname{graddiv} \vec{u} + \mu \nabla^2 \vec{u} + \vec{F} = \rho \frac{\partial^2 \vec{u}}{\partial t^2}$$

E.
$$(\lambda + \mu)graddiv\vec{u} + \mu\nabla^2 \vec{u} + \vec{F} = \rho \frac{\partial^2 \vec{u}}{\partial t^2}$$

16. Какое из ниже приведенных уравнений определяет тензорное уравнение Бельтрами - Мичелла?

A.
$$\nabla^2 \hat{\sigma} + \frac{1}{1+\alpha} \nabla \nabla \sigma = \hat{0}$$

B.
$$\nabla^2 \hat{\sigma} - \frac{1}{1+\nu} \nabla \nabla \sigma = \hat{0}$$

C.
$$\nabla^2 \hat{\sigma} - \nu \frac{1}{1+\nu} \nabla \nabla \sigma = \hat{0}$$

D.
$$\nabla^2 \hat{\sigma} + \nu \frac{1}{1+\alpha} \nabla \nabla \sigma = \hat{0}$$

E.
$$\nabla^2 \hat{\sigma} + \frac{3}{1+\nu} \nabla \nabla \sigma = \hat{0}$$

17. Какая из ниже приведенных формул определяет формулу Клапейрона?

A.
$$\widetilde{U} = \frac{1}{4} \left(\int_{V} \vec{F} \cdot \vec{u} dv + \int_{S} \vec{q} \cdot \vec{u} ds \right)$$

B.
$$\widetilde{U} = \frac{1}{2} \left(\int_{V} \vec{F} \cdot \vec{u} dv + \int_{S} \vec{q} \cdot \vec{u} ds \right)$$

C.
$$\widetilde{U} = \frac{1}{2} \left(\int_{V} \vec{F} \cdot \vec{u} dv + \int_{S} q \cdot \vec{u} ds \right)$$

D.
$$\widetilde{U} = \frac{1}{2} \left(\int_{V} \vec{F} \cdot \vec{u} dv - \int_{S} \vec{q} \cdot \vec{u} ds \right)$$

E.
$$\widetilde{U} = \frac{1}{3} \left(\int_{V} \vec{F} \cdot \vec{u} dv + \int_{S} \vec{q} \cdot \vec{u} ds \right)$$

18. Какая из ниже приведенных формул определяет напряжение σ_z при плоской деформации?

A.
$$\sigma_z = v(\sigma_x + \sigma_y)$$

B.
$$\sigma_z = v(\sigma_x - \sigma_v)$$

C.
$$\sigma_z = v(\sigma_x^2 + \sigma_y)$$

D.
$$\sigma_z = v^2(\sigma_x + \sigma_y)$$

E.
$$\sigma_z = v^3 (\sigma_x + \sigma_y)$$

19. Определите правильное соотношение

A.
$$\sigma_x = \frac{\partial^2 \Phi}{\partial y^2}$$
, $\sigma_y = \frac{\partial^2 \Phi}{\partial x^2}$, $\tau_{xy} = +\frac{\partial^2 \Phi}{\partial x \partial y}$.

B.
$$\sigma_x = \frac{\partial^2 \Phi}{\partial v^2}$$
, $\sigma_y = \frac{\partial^2 \Phi}{\partial x^3}$, $\tau_{xy} = -\frac{\partial^2 \Phi}{\partial x \partial v}$.

C.
$$\sigma_x = \frac{\partial^2 \Phi}{\partial v^3}$$
, $\sigma_y = \frac{\partial^2 \Phi}{\partial x^2}$, $\tau_{xy} = -\frac{\partial^2 \Phi}{\partial x \partial v}$.

D.
$$\sigma_x = \frac{\partial^2 \Phi}{\partial v^2}$$
, $\sigma_y = \frac{\partial^2 \Phi}{\partial x^2}$, $\tau_{xy} = -\frac{\partial^3 \Phi}{\partial x \partial v}$.

$$\text{E. } \sigma_x = \frac{\partial^2 \Phi}{\partial y^2}, \quad \sigma_y = \frac{\partial^2 \Phi}{\partial x^2}, \quad \tau_{xy} = -\frac{\partial^2 \Phi}{\partial x \partial y}.$$

- 20. Какое из ниже приведенных уравнений определяет функцию напряжений Эри?
- A. $\nabla^2 \nabla^3 \Phi = 0$
- B. $\nabla^2 \nabla \Phi = 0$
- C. $\nabla^2 \nabla^2 \Phi = 0$
- D. $\nabla^2 \nabla^4 \Phi = 0$
- E. $\nabla \nabla^2 \Phi = 0$
- 21. Чему равна концентрация напряжений в задаче Кирша?
- A. 2
- B. 3
- C. 1
- D. 5
- E. 6
- 22. Какая из ниже приведенных формул определяет коэффициент концентрации напряжений в задаче Колосова Инглиса?
- A. $1 2\frac{a}{b}$
- B. $1 + 2\frac{a}{b}$
- C. $1+3\frac{a}{b}$
- D. $1+4\frac{a}{b}$
- E. $2 + 2\frac{a}{b}$

23. Какая из ниже приведенных формул определяет концентрацию напряжений выреза любой формы?

A.
$$1+3\sqrt{\frac{a}{\rho}}$$

B.
$$2+2\sqrt{\frac{a}{\rho}}$$

C.
$$1-2\sqrt{\frac{a}{\rho}}$$

D.
$$1+2\sqrt{\frac{a}{\rho}}$$

E.
$$1 + 2\sqrt{\frac{a^2}{\rho}}$$

24. Каким называется значение параметра нагрузки, соответствующее точке бифуркации?

- А. одноосным
- В. линейным
- С. двухосным
- D. трехосным
- Е. критическим

25. Что такое контактная задача?

- А. первая краевая задача
- В. вторая краевая задача
- С. третья краевая задача
- D. первая, вторая и третья краевые задачи
- Е. задача Коши

26. Что влияет на теоретическую прочность металла при растяжении?

А. трещина

- В. линейный дефект кристалла
- С. поры
- D. краевая дислокация
- Е. винтовая дислокация

27. Что влияет на теоретическую прочность металла при сдвиге?

- А. трещина первого типа
- В. трещина второго типа
- С. трещина третьего типа
- D. дислокация
- Е. поры

28. Для каких материалов поверхностная энергия вещества является константой?

- А. вязкий материал
- В. хрупкий материал
- С. пластический материал
- D. вязкоупругий материал
- Е. стареющий материал

29. Кто моделировал трещину, как тонкий плоский эллипс?

- А. Ирвин
- В. Коши
- С Качанов
- D. Работнов
- Е. Гриффитс

30. Кто моделировал трещину, как математический разрез?

- А. Ирвин
- В. Коши
- С. Качанов
- D. Работнов
- Е. Гриффитс

31. Какая из ниже приведенных формул определяет коэффициент интенсивности напряжений для трещины первого типа?

A.
$$K_I = \sigma \sqrt{c}$$

B.
$$K_I = 2\sigma\sqrt{\pi c}$$

C.
$$K_I = \sqrt{\pi c}$$

D.
$$K_I = \sigma \sqrt{\pi}$$

E.
$$K_I = \sigma \sqrt{\pi c}$$

32. Какая из ниже приведенных формул определяет критическую нагрузку при плоской деформации?

A.
$$\sigma_0 = \sqrt{\frac{2E\gamma_s}{(1-v^2)\pi c}}$$
.

B.
$$\sigma_0 = \sqrt{\frac{2E\gamma_s}{\pi c}}$$
.

C.
$$\sigma_0 = \sqrt{\frac{2E}{(1-v^2)\pi c}}$$
.

D.
$$\sigma_0 = \sqrt{\frac{2E}{\pi c}}$$
.

E.
$$\sigma_0 = \sqrt{\frac{2\gamma_s}{\pi c}}$$
.

33. Какая из ниже приведенных формул определяет критическую нагрузку при плоском напряженном состоянии?

A.
$$\sigma_0 = \sqrt{\frac{2E\gamma_s}{(1-v^2)\pi c}}$$
.

B.
$$\sigma_0 = \sqrt{\frac{2E\gamma_s}{\pi c}}$$
.

C.
$$\sigma_0 = \sqrt{\frac{2E}{(1-v^2)\pi c}}$$
.

D.
$$\sigma_0 = \sqrt{\frac{2E}{\pi c}}$$
.

E.
$$\sigma_0 = \sqrt{\frac{2\gamma_s}{\pi c}}$$
.

34. Как называется явление возрастания во времени деформации при постоянной нагрузке?

- А. ползучесть
- В. релаксация
- С. время релаксации
- D. время запаздывания
- Е. разгрузка

35. Как называется явление убывания во времени напряжений при постоянной деформации?

- А. ползучесть
- В. релаксация
- С. время релаксации
- D. время запаздывания
- Е. разгрузка

36. Сколько независимых постоянных необходимо для описания упругой среды?

- A. 1
- B. 2
- C. 3
- D. 4
- E. 8

- 37. Сколько независимых постоянных необходимо для описания ортотропной упругой среды?
- A. 5
- B. 10
- C. 8
- D. 9
- E. 12
- 38. Сколько независимых постоянных необходимо для описания трансверсально-изотропной упругой среды?
- A. 5
- B. 10
- C. 8
- D. 9
- E. 12
- 39. Какое из ниже приведенных соотношений определяет условие пластичности Мизеса?
- A. $\tau_{\text{max}} = \tau_T$,
- B. $\sigma_i = \sigma_T$,
- C. $\tau_i^2 = \tau_T$,
- D. $\sigma_i^2 = \sigma_T$,
- E. $\tau_{\text{max}}^2 = \tau_T$,
- 40. Какое из ниже приведенных соотношений определяет условие пластичности Треска Сен-Венана?
- A. $\tau_{\text{max}} = \tau_T$,
- B. $\sigma_i = \sigma_T$,
- C. $\tau_i^2 = \tau_T$,
- D. $\sigma_i^2 = \sigma_T$,

E.
$$\tau_{\text{max}}^2 = \tau_T$$
,

41. Что означает исчерпание несущей способности трубы?

А. все поперечные сечения трубы остаются в упругом состояний В. все поперечные сечения трубы переходят в пластическое состояние

- С. половина сечений трубы переходят в пластическое состояние
- D. сечения трубы остаются в упругопластическом состояний
- Е. внутренняя часть трубы находиться в пластическом состояний

42. К каким материалам можно применить модель Гриффитса?

- А. грунт
- В. песок
- С. вязкий материал
- D. стареющий материал
- Е. квазихрупкий материал

43. Сколько насчитывается основных гипотез теории Ильющина?

- A. 1
- B. 2
- C. 3
- D. 4
- E. 5

44. Сколько констант требуется для описания вязкопластической модели?

- A. 1
- B. 2
- C. 3
- D. 4
- E. 5

45. Кому принадлежит постановка задачи об устойчивости вязкопластического течения?

- А. Ильюшин
- В. Ишлинский
- С. Работнов
- D. Качанов
- Е. Ирвин

46. Кого считают основателями теории механики повреждений?

- А. Ильюшин, Качанов
- В. Ишлинский, Качанов
- С. Качанов, Работнов
- D. Ирвин, Качанов
- Е. Ирвин, Гриффитс

47. Какой материал при растяжении выдерживает большую нагрузку, чем при сжатии?

- А. лед
- В. горная порода
- С. металл
- D песок
- Е. дерево

48. У какого материала самый большой модуль упругости?

- А. лед
- В. сталь
- С. горная порода
- D. дерево
- Е. резина

49. У какого материала самый малый модуль упругости?

- А. лел
- В. специальная сталь
- С. горная порода

- D. дерево
- Е. резина

50. У какого материала самый высокий предел прочности?

- А. лед
- В. специальная сталь
- С. горная порода
- D. дерево
- Е. резина

51. Какое из ниже приведенных уравнений определяет закон Гука об изменении формы?

- A. $\sigma_{ii} = \lambda \varepsilon \delta_{ii} + 2\mu \varepsilon_{ii}$
- B. $\varepsilon_{ij} = \frac{1}{\pi} \left[(1 + \nu) \sigma_{ij} \nu \sigma_{kk} \delta_{ij} \right]$
- C. $\hat{\sigma} = \lambda \hat{E} \varepsilon + 2u\hat{\varepsilon}$
- D. $\sigma = K\varepsilon$
- E. $\hat{\sigma}_2 = 2\mu\hat{\varepsilon}_2$

52. Определите формулу скорости продольной волны

- A. $v_P^2 = \frac{K + \frac{4}{3}\mu}{\rho}$ B. $v_P^2 = \frac{K}{\rho}$ C. $v_S^2 = \frac{\mu}{\rho}$

- D. $\frac{K}{\rho} = v_P^2 \frac{4}{3}v_S^2$
- E. $v = \frac{1}{2} \left(1 \frac{1}{\frac{v_p^2}{-2} 1} \right)$

53. Определите формулу скорости поперечной волны

- A. $v_P^2 = \frac{K + \frac{4}{3}\mu}{\rho}$
- B. $v_P^2 = \frac{K}{a}$

C.
$$v_S^2 = \frac{\mu}{\rho}$$

D.
$$\frac{K}{\rho} = v_P^2 - \frac{4}{3}v_S^2$$

E.
$$v = \frac{1}{2} \left(1 - \frac{1}{\frac{v_P^2}{v_S^2} - 1} \right)$$

54. Найдите правильное соотношение

A.
$$\vec{p} = \vec{n} \times \hat{\sigma}$$

B.
$$\vec{p} = \hat{n} \cdot \hat{\sigma}$$

C.
$$\vec{p} = \hat{\sigma} * \vec{n}$$

C.
$$\vec{p} = \hat{\sigma} * \vec{n}$$

D. $\vec{p} = -\hat{\sigma} \cdot \vec{n}$

E.
$$\vec{p} = \vec{n} \cdot \hat{\sigma}$$

55. Определите среднее гидростатическое давление

A.
$$\sigma = \frac{1}{2}(\sigma_{11} + \sigma_{22} + \sigma_{33})$$

B.
$$\sigma = \frac{1}{3}(\sigma_{11} + \sigma_{12} + \sigma_{13})$$

C.
$$\sigma = \frac{1}{3}(\sigma_{21} + \sigma_{22} + \sigma_{23})$$

D.
$$\sigma = \frac{1}{3}(\sigma_{31} + \sigma_{32} + \sigma_{33})$$

E.
$$\sigma = \frac{1}{3}(\sigma_{11} + \sigma_{22} + \sigma_{33})$$

56. Найдите объемную деформацию

A.
$$\varepsilon = \varepsilon_{11} + \varepsilon_{22} + \varepsilon_{32}$$

B.
$$\varepsilon = \varepsilon_{21} + \varepsilon_{22} + \varepsilon_{33}$$

C.
$$\varepsilon = \varepsilon_{32} + \varepsilon_{22} + \varepsilon_{11}$$

D.
$$\varepsilon = \varepsilon_{11} + \varepsilon_{12} + \varepsilon_{13}$$

E.
$$\varepsilon = \varepsilon_{11} + \varepsilon_{22} + \varepsilon_{33}$$

57. Определите компоненты девиатора напряжения

A.
$$s_{ij} = \sigma_{ij} - \sigma \delta_{ij}$$

B.
$$s_{ij} = \sigma_{ij} + \sigma \delta_{ij}$$

C.
$$s_{ij} = \sigma_{ij} - \frac{1}{3}\sigma\delta_{ij}$$

D.
$$s_{ij} = \sigma_{ij} - \sigma_{kk}\delta_{ij}$$

E.
$$s_{ij} = \sigma_{ij} - 3\sigma \delta_{ij}$$

58. Определите компоненты девиатора деформации

A.
$$\epsilon_{ij} = \varepsilon_{ij} - \varepsilon \delta_{ij}$$

B.
$$\epsilon_{ij} = \varepsilon_{ij} - \frac{1}{2}\varepsilon\delta_{ij}$$

C.
$$\epsilon_{ij} = \epsilon_{ij} - \frac{1}{3} \epsilon \delta_{ij}$$

D.
$$\epsilon_{ij} = \varepsilon_{ij} + \varepsilon \delta_{ij}$$

E.
$$\epsilon_{ij} = \varepsilon_{ij} + \frac{1}{2}\varepsilon\delta_{ij}$$

59. Найдите правильное соотношение

A.
$$K = 3\lambda + 2\mu$$

B.
$$K = \lambda + 2\mu$$

C.
$$K = 3\lambda + \mu$$

C.
$$K = 3\lambda + \mu$$

D. $K = \lambda + \frac{2}{3}\mu$

E.
$$K = \lambda + \mu$$

60. Определите верное соотношение

A.
$$E = 2(1 + 2\nu)G$$

B.
$$E = (1 + v)G$$

C.
$$E = 2(1 + \nu)G$$

D.
$$E = 2(1 - 2\nu)G$$

E. $E = (1 + 2\nu)G$

E.
$$E = (1 + 2\nu)G$$

61. Найдите верное соотношение

A.
$$K = \frac{E}{(1+2\nu)3}$$

B. $K = \frac{E}{(1-2\nu)2}$
C. $K = \frac{E}{(1+2\nu)5}$
D. $K = \frac{E}{(1-2\nu)5}$

B.
$$K = \frac{E}{(1-2\nu)^2}$$

C.
$$K = \frac{E}{(1+2\nu)5}$$

D.
$$K = \frac{E}{(1-2\nu)5}$$

E.
$$K = \frac{E}{(1-2\nu)3}$$

62. Определите правильное соотношение

A.
$$\lambda = \frac{2\mu}{1-2\nu}$$
B.
$$\lambda = \frac{2\mu\nu}{1+2\nu}$$
C.
$$\lambda = \frac{2\nu}{1-2\nu}$$
D.
$$\lambda = \frac{2\mu\nu}{1-2\nu}$$
E.
$$\lambda = \frac{\mu\nu}{1+2\nu}$$

B.
$$\lambda = \frac{2\mu\nu}{1+2\nu}$$

C.
$$\lambda = \frac{2\nu}{1-2\nu}$$

D.
$$\lambda = \frac{2\mu\nu}{1-2\nu}$$

E.
$$\lambda = \frac{\mu \nu}{1+2\nu}$$

63. Определите, какое из соотношений определяет удельную энергию изменения объема упругого тела

A.
$$U_1 = \frac{1}{2}K\varepsilon^2$$

B.
$$U_1 = \frac{1}{2}(\lambda + 2\mu)\varepsilon^2$$

C.
$$U_1 = \frac{1}{2}(3\lambda + 2\mu)\varepsilon^2$$

D.
$$U_1 = \frac{1}{2}K\varepsilon^2$$

E.
$$U_1 = (\lambda + 2\mu)\varepsilon^2$$

64. Найдите правильное соотношение

A.
$$\tau_i = 3\mu\gamma_i$$

B.
$$\tau_i = \mu \gamma_i$$

C.
$$\tau_i = 2\mu\gamma_i$$

C.
$$\tau_i = 2\mu\gamma_i$$

D. $\tau_i = \mu\gamma_i^2$

E.
$$\tau_i = -2\mu\gamma_i$$

65. Определите, какое из соотношений определяет удельную энергию изменения формы упругого тела

A.
$$U_2 = \sigma_i \varepsilon_i$$

B.
$$U_2 = \frac{1}{2}\mu\varepsilon^2$$

C.
$$U_2 = \frac{1}{2}\mu\varepsilon_i^2$$

D.
$$U_2 = \mu \gamma_i^2$$

E.
$$U_2 = \frac{1}{2}\mu\gamma_i^2$$

66. Какое из этих соотношений описывает удельную энергию упругого тела

A.
$$U = \frac{1}{2}K\varepsilon^3 + \frac{1}{2}\mu\gamma_i^2$$

B.
$$U = \frac{1}{3}K\varepsilon^2 + \frac{1}{2}\gamma_i^2$$

C.
$$U = \frac{1}{2}K\varepsilon^2 + \gamma_i^2$$

D.
$$U = \frac{1}{2}K\varepsilon^2 + \frac{1}{2}\mu\gamma_i^2$$

E.
$$U = \frac{3}{4}K\varepsilon + \mu \gamma_i^2$$

67. Найдите формулу Чаплыгина-Садовского

A.
$$q(x) = \frac{P}{\pi \sqrt{q-x}}$$

A.
$$q(x) = \frac{P}{\pi\sqrt{a-x}}$$
B.
$$q(x) = \frac{P}{\pi\sqrt{a^2-x^2}}$$

C.
$$q(x) = \frac{\frac{P}{p}}{3\pi\sqrt{a^2 - x^2}}$$

D. $q(x) = \frac{e}{6\pi\sqrt{a^2 - x^2}}$

D.
$$q(x) = \frac{P}{6\pi\sqrt{a^2 - x^2}}$$

E.
$$q(x) = \frac{P}{2\pi\sqrt{a-x}}$$

68. Чему равно время релаксации льда?

A.
$$10^{10}$$
c

B.
$$10^2 - 10^3 c$$

C.
$$1.96 \times 10^{-10}c$$

D.
$$4 \times 10^{-10} c$$

E.
$$10^9 c$$

69. Чему равно время релаксации воды?

A.
$$10^{10}$$
c

B.
$$10^2 - 10^3 c$$

C.
$$1.96 \times 10^{-10}c$$

- D. $4 \times 10^{-10} c$
- E. $10^9 c$

70. Чему равно время релаксации воздуха?

- A. 10^{10} c
- B. $10^2 10^3 c$
- C. $1.96 \times 10^{-10}c$
- D. $4 \times 10^{-10} c$
- E. $10^9 c$

71. Чему равно время релаксации стекла?

- A. 10^{10} c
- B. $10^2 10^3 c$
- C. $1.96 \times 10^{-10}c$
- D. $4 \times 10^{-10} c$
- E. $10^9 c$

72. Чему равно время релаксации горных пород?

- A. 10^{10} c
- B. $10^2 10^3 c$
- C. $1.96 \times 10^{-10}c$
- D. $4 \times 10^{-10} c$
- E. $10^9 c$

73. Установите правильное соотношение

- A. $\sigma_n = \sigma_{okt} = 2\sigma$
- B. $\sigma_n = \sigma_{okt} = \sigma_1 + \sigma_2 + \sigma_3$
- C. $\sigma_n = \sigma_{okt} = \frac{1}{3}(\sigma_1 + \sigma_2 + \sigma_3) = \sigma$
- D. $\sigma_n = \sigma_{okt} = 4\sigma$
- E. $\sigma_n = \sigma_{okt} = \frac{1}{2}(\sigma_{11} + \sigma_{22} + \sigma_{33})$

74. Определите правильное соотношение

A.
$$\tau_n = \tau_{okt} = 2\tau_i$$

B.
$$\tau_n = \tau_{okt} = 3\sigma_i$$

B.
$$au_n = au_{okt} = 3\sigma_i$$

C. $au_n = au_{okt} = \sqrt{2\tau_i}$

D.
$$\tau_n = \tau_{okt} = \frac{\sqrt{2}}{3}\sigma_i = \sqrt{\frac{2}{3}}\tau_i$$

E.
$$au_n = au_{okt} = \sqrt{3}\sigma_i$$

75. Найдите правильное разложение вектора напряжения

A.
$$\vec{p}_n = \sigma_n \vec{n} + \tau_n \vec{n}$$

B.
$$\vec{p}_n = \sigma_n \vec{n}$$

$$\vec{r}_{n} = \tau_{n} \vec{\tau}$$

C.
$$\vec{p}_n = \tau_n \vec{\tau}$$

D. $\vec{p}_n = \sigma_n \vec{\tau} + \tau_n \vec{n}$
E. $\vec{p}_n = \sigma_n \vec{n} + \tau_n \vec{\tau}$

E.
$$\vec{p}_n = \sigma_n \vec{n} + \tau_n \vec{\tau}$$

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Седов Л.И. Механика сплошной среды, т. 1,2, М., Наука, 1996.
- 2. Седов Л.И. Механика сплошной среды: В 2 т. Т.1. 6-е изд. стер. СПб.: Издательство "Лань", 2004. -528 с. (Учебники для вузов. Специальная литература).
- 3. Седов Л.И. Механика сплошной среды: В 2 т. Т.2. 6-е изд. стер. -СПб.: Издательство "Лань", 2004. -560с. (Учебники для вузов. Специальная литература).
- 4. Лойцянский Л.Г. Механика жидкости и газа, М., Наука, 1987.-736с.
- 5. Лойцянский Л.Г. Механика жидкости и газа: Учебник для вузов. 7-е изд. испр. М.:Дрофа, 2003.-840с.
- 6. Работнов Ю.Н. Механика деформируемого твердого тела. М.: Наука, 1988.
- 7. Фабер Т.Е. Гидроаэродинамика. М.: Постмаркет. 2011. -560 с.
- 8. Мейз Дж. Теория и задачи механики сплошной среды, М., Мир, 1974.
- 9. Мейз Дж. Теория и задачи механики сплошных сред: М.: Изд-во ЛКИ. 2007. 320 с.
- 10.Robert W. Fox, Alan T. McDonald, Philip J. Pritchad. Introduction to Fluid Mechanics, International Student Version, 8th Edition, John Wiley&Sons Inc., 2011.- 896 p.
- 11. Ершина А.Қ., Шериазданов Ғ.Б. Тұтас орта механикасының теориялық негіздері және классикалық модельдері. Оқулық. / Жалпы ред. басқ. Ш.Ә. Ершин. Алматы: Қазақ университеті, 2005. 167 б.
- 12. Шерьязданов Г.Б. Модели механики сплошной среды. Учебное пособие: Алматы. : Қазақ университеті, 2007.- 188 с.

- 13.Искакбаев А.И. Основы механики деформируемого твердого тела: Учебное пособие.–Алматы: Қазақ университеті, 2008. –216с.
- 14.Шерьязданов Г.Б. Задачи и упражнения по механике сплошной среды: Учебное пособие. Алматы: Қазақ университеті, 2008.-68с.